Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 58(2): 520-531, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36448476

RESUMO

BACKGROUND: Sinonasal malignant tumors (SNMTs) have a high recurrence risk, which is responsible for the poor prognosis of patients. Assessing recurrence risk in SNMT patients is a current problem. PURPOSE: To establish an MRI-based radiomics nomogram for assessing relapse risk in patients with SNMT. STUDY TYPE: Retrospective. POPULATION: A total of 143 patients with 68.5% females (development/validation set, 98/45 patients). FIELD STRENGTH/SEQUENCE: A 1.5-T and 3-T, fat-suppressed fast spin echo (FSE) T2-weighted imaging (FS-T2WI), FSE T1-weighted imaging (T1WI), and FSE contrast-enhanced T1WI (T1WI + C). ASSESSMENT: Three MRI sequences were used to manually delineate the region of interest. Three radiomics signatures (T1WI and FS-T2WI sequences, T1WI + C sequence, and three sequences combined) were built through dimensional reduction of high-dimensional features. The clinical model was built based on clinical and MRI features. The Ki-67-based and tumor-node-metastasis (TNM) model were established for comparison. The radiomics nomogram was built by combining the clinical model and best radiomics signature. The relapse-free survival analysis was used among 143 patients. STATISTICAL TESTS: The intraclass/interclass correlation coefficients, univariate/multivariate Cox regression analysis, least absolute shrinkage and selection operator Cox regression algorithm, concordance index (C index), area under the curve (AUC), integrated Brier score (IBS), DeLong test, Kaplan-Meier curve, log-rank test, optimal cutoff values. A P value < 0.05 was considered statistically significant. RESULTS: The T1 + C-based radiomics signature had best prognostic ability than the other two signatures (T1WI and FS-T2WI sequences, and three sequences combined). The radiomics nomogram had better prognostic ability and less error than the clinical model, Ki-67-based model, and TNM model (C index, 0.732; AUC, 0.765; IBS, 0.185 in the validation set). The cutoff values were 0.2 and 0.7 and then the cumulative risk rates were calculated. DATA CONCLUSION: A radiomics nomogram for assessing relapse risk in patients with SNMT may provide better prognostic ability than the clinical model, Ki-67-based model, and TNM model. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 5.


Assuntos
Neoplasias , Nomogramas , Feminino , Humanos , Masculino , Antígeno Ki-67 , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Estudos Retrospectivos
2.
Eur Radiol ; 32(10): 6933-6942, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35687135

RESUMO

OBJECTIVE: To assess the predictive ability of a multi-parametric MRI-based radiomics signature (RS) for the preoperative evaluation of Ki-67 proliferation status in sinonasal malignancies. METHODS: A total of 128 patients with sinonasal malignancies that underwent multi-parametric MRIs at two medical centres were retrospectively analysed. Data from one medical centre (n = 77) were used to develop the predictive models and data from the other medical centre (n = 51) constitute the test dataset. Clinical data and conventional MRI findings were reviewed to identify significant predictors. Radiomics features were determined using maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms. Subsequently, RSs were established using a logistic regression (LR) algorithm. The predictive performance of RSs was assessed using calibration, decision curve analysis (DCA), accuracy, and AUC. RESULTS: No independent predictors of high Ki-67 proliferation were observed based on clinical data and conventional MRI findings. RS-T1, RS-T2, and RS-T1c (contrast enhancement T1WI) were established based on a single-parametric MRI. RS-Combined (combining T1WI, FS-T2WI, and T1c features) was developed based on multi-parametric MRI and achieved an AUC and accuracy of 0.852 (0.733-0.971) and 86.3%, respectively, on the test dataset. The calibration curve and DCA demonstrated an improved fitness and benefits in clinical practice. CONCLUSIONS: A multi-parametric MRI-based RS may be used as a non-invasive, dependable, and accurate tool for preoperative evaluation of the Ki-67 proliferation status to overcome the sampling bias in sinonasal malignancies. KEY POINTS: • Multi-parametric MRI-based radiomics signatures (RSs) are used to preoperatively evaluate the proliferation status of Ki-67 in sinonasal malignancies. • Radiomics features are determined using maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms. • RSs are established using a logistic regression (LR) algorithm.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Proliferação de Células , Humanos , Antígeno Ki-67 , Estudos Retrospectivos
3.
Front Oncol ; 11: 659905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012922

RESUMO

OBJECTIVES: To investigate the efficacy of multi-parametric MRI-based radiomics nomograms for preoperative distinction between benign and malignant sinonasal tumors. METHODS: Data of 244 patients with sinonasal tumor (training set, n=192; test set, n=52) who had undergone pre-contrast MRI, and 101 patients who underwent post-contrast MRI (training set, n=74; test set, n=27) were retrospectively analyzed. Independent predictors of malignancy were identified and their performance were evaluated. Seven radiomics signatures (RSs) using maximum relevance minimum redundancy (mRMR), and the least absolute shrinkage selection operator (LASSO) algorithm were established. The radiomics nomograms, comprising the clinical model and the RS algorithms were built: one based on pre-contrast MRI (RNWOC); the other based on pre-contrast and post-contrast MRI (RNWC). The performances of the models were evaluated with area under the curve (AUC), calibration, and decision curve analysis (DCA) respectively. RESULTS: The efficacy of the clinical model (AUC=0.81) of RNWC was higher than that of the model (AUC=0.76) of RNWOC in the test set. There was no significant difference in the AUC of radiomic algorithms in the test set. The RS-T1T2 (AUC=0.74) and RS-T1T2T1C (RSWC, AUC=0.81) achieved a good distinction efficacy in the test set. The RNWC and the RNWOC showed excellent distinction (AUC=0.89 and 0.82 respectively) in the test set. The DCA of the nomograms showed better clinical usefulness than the clinical models and radiomics signatures. CONCLUSIONS: The radiomics nomograms combining the clinical model and RS can be accurately, safely and efficiently used to distinguish between benign and malignant sinonasal tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA